

Hornsea Project Four

Outline Offshore Operations and Maintenance Plan (TRACKED)

Request for Information Date: 17 April 2023 Document Reference: G2.7 Revision: 03

PreparedKatie Swales, Orsted, April 2023CheckedFaye McGinn, Orsted, April 2023AcceptedNatalie Bown, Orsted, April 2023ApprovedJamie Baldwin, Orsted, April 2023

G2.7 Ver. B

Revision Summary						
Rev	Date	Prepared by	Checked by	Approved by		
01	29 March 2022	Hannah Towner-Roethe,	Keith Lynch, Orsted	Julian Carolan,		
		Orsted		Orsted		
02	04 July 2022	Hannah Towner-Roethe,	Keith Lynch, Orsted	Julian Carolan,		
		Orsted		Orsted		
03	17 April 2023	Katie Swale, Orsted	Faye McGinn, Orsted	Jamie Baldwin,		
				Orsted		

Revision Change Log					
Rev	Page	Section	Description		
01	N/A	N/A	Submitted at Deadline 2.		
02	8	Table 3	Further detail added to cable protection replacement		
02	6-11	Table 3	Formatting error corrected		
03	3-12	Section 3	Updated to reflect red throated diver best practice protocols		

Table of Contents

1	Introduction	5
2	Offshore Operations and Maintenance Activities	<u>5</u>
3	Red Throated Diver Best Practice Protocols	<u>12</u>

List of Tables

Table 1: Maximum design parameters for general offshore operation and maintenance	<u>5</u> 6
Table 2: Maximum design parameters for total offshore operation and maintenance activities	. 6
Table 3: Maximum design parameters for total offshore operation and maintenance activities	<u>6</u> 7

Glossary

Term	Definition
Development Consent Order (DCO)	An order made under the Planning Act 2008 granting development consent for one or more Nationally Significant Infrastructure Projects (NSIP).
Hornsea Project Four offshore wind farm	The term covers all elements of the project (i.e. both the offshore and onshore). Hornsea Four infrastructure will include offshore generating stations (wind turbines), electrical export cables to landfall, and connection to the electricity transmission network. Hereafter referred to as Hornsea Four.
Maximum Design Scenario (MDS)	The maximum design parameters of each Hornsea Four asset (both on and offshore) considered to be a worst case for any given assessment.
Scour protection	Protective materials to avoid sediment being eroded away from the base of the offshore foundations as a result of the flow of water.
Wind turbine generator	All the components of a wind turbine, including the tower, nacelle, and rotor.

Acronyms

Term	Definition
CTV	Crew Transport Vessel
DCO	Development Consent Order
JUV	Jack Up Vessel
ROV	Remotely Operated Vechicle
RTD	Red Throated Diver
SOV	Service Operation Vessel
WTG	Wind Turbine Generator

1 Introduction

- 1.1.1.1 This document provides a description of the reasonably foreseeable maintenance activities at Hornsea Four. This information is taken from the document A1.4 Project Description and will subsequently inform the Operation and Maintenance Plan for Hornsea Four which shall be developed post-Consent. Maintenance activities can be categorised into two levels: preventive and corrective maintenance:
 - Preventative maintenance will be undertaken in accordance with scheduled services; and
 - Corrective maintenance covers unexpected repairs, component replacements, retrofit campaigns and breakdowns.
- 1.1.1.2 A full definition of maintain is provided in C1.1 draft DCO including DML, Interpretations. Maintain includes inspect, upkeep, repair, adjust, and alter and further includes remove, reconstruct and replace, to the extent assessed in the respective receptor chapter of the ES or HRA.
- 1.1.1.3 Details of licensed marine activities are set out in Schedule 11 and Schedule 12 of C1.1.
- 1.1.1.4 Some activities which could be needed in the operation and maintenance phase of Hornsea Four have not been included in this application as it is considered that these would be best applied for later, if needed, once specific details of the requirements are understood. These activities are not included here as they are currently not reasonably foreseeable.
- 1.1.1.5 <u>This document also secures the Applicant's commitment to a best practice protocol for red</u> <u>throated diver -and common scoter during the operation and maintenance of Hornsea Four.</u>

2 Offshore Operations and Maintenance Activities

- 2.1.1.1 The overall operation and maintenance strategy will be finalised once the operation and maintenance base location and technical specification of Hornsea Four are known. The offshore operation and maintenance will be both preventive and corrective. However, as more knowledge has been gained in operation and maintenance over the last years, the industry is developing and improving monitoring and preventive maintenance of operational windfarms.
- 2.1.1.2 The general operation and maintenance strategy may rely on an onshore (harbour based) operation and maintenance base, Crew Transport Vessels (CTVs), Service Operation Vessels (SOVs), offshore accommodation, supply vessels, cable and remedial protection vessels, vessels and helicopters for the operation and maintenance services that will be performed at the project. The final operational and maintenance strategy chosen may be a combination of the above solutions.
- 2.1.1.3 The maximum design parameters for general operation and maintenance activities are presented in Table 1. The total operational vessel and helicopter requirements for Hornsea Four are presented in Table 2. Table 2.

	Table 1: Maximum	design paraı	meters for gen	eral offshore o	peration c	and maintenance	activities.
--	------------------	--------------	----------------	-----------------	------------	-----------------	-------------

Parameter	Maximum Design Parameters
Operation and maintenance vessels - CTVs:	10
Operation and maintenance vessels - SOVs	2
Operation and maintenance vessels - supply vessels	Ad hoc
JUVs	Ad hoc
Operational hours	24 hours, seven days a week

2.1.1.4 Two scenarios for personnel visits options are currently envisaged, either Scenarios [A] (operation and maintenance from onshore helicopter base) or [B] (wind turbine generator operation and maintenance from offshore base or vessel with helicopter personnel transfer).

Table 2: Maximum design parameters for total offshore operation and maintenance activities.

A single visit comprises a return trip to and from the Hornsea Four array area.

Parameter	Maximum Design Parameters
Wind turbine Visits (included in Scenario [A] only) (per year	2,580
Wind turbine Foundation Visits (included in Scenarios [A] and [B]) (per year	780
Platform Visits - Structural Scope (included in Scenarios [A] and [B]) (per year)	65
Platform Visits - Electrical Scope (included in Scenarios [A] and [B]) (per year)	100
Crew Shift Transfer (included in Scenarios [B] only) (per year)	260
Total Trips (worst case of Scenarios [A] or [B]) (per year)	3,525
Jack-up wind turbine visits (per year)	36
Jack-up foundation visits (per year)	82
Jack-up platform visits - (per year)	6
Jack-up total trips (per year)	124
Crew vessels wind turbine visits (per year)	1,205 visits per year
Supply vessels accommodation platform visits (per year)	104 visits per year

Operation and maintenance activities

- 2.1.1.5 The following section describes the processes and methods Hornsea Four would undertake for those activities for which a licence is required and for which consent is sought. This includes regular and scheduled operation and maintenance as well as unscheduled maintenance that is likely to occur.
- 2.1.1.6 Maintenance due to failures that cannot be anticipated are not described here and cannot be included within the application for Development Consent. It should be noted that the application does include typical unscheduled, emergency or reactive maintenance, i.e. the types of faults that offshore windfarms have the potential to experience, as well as scheduled or routine maintenance.
- 2.1.1.7 During the operational life of Hornsea Four (anticipated 35 years), there can be a total of up to 16 vessels in the Hornsea Four array area on any given day. Descriptions of offshore operation and maintenance activities are provided in **Table 3**. Numbers are provided per visit. A single visit comprises a return trip to and from the Hornsea Four array and export cable area.

Activity	Rationale	Parameter	Maximum Design Parameter
Seabed surveys	Seabed surveys will be required to ensure that cables remain buried and that the scour protection remains intact. Typically, this will be undertaken more frequently in early years, hence the assessment is based on twice yearly for first three years; followed by yearly thereafter.	Maximum number in lifetime	38
Component replacement	This activity allows for the replacement of major wind turbine components, for example blades,	Maximum number of exchange	1260 (7)

Table 3: Maximum design parameters for total offshore operation and maintenance activities.

Activity	Rationale	Parameter	Maximum Design Parameter
	blade bearings, hub generators, yaw rings or nacelles (like-for-like or as within the proiect	events – lifetime (per WTG)	
	envelope). Works conducted under this activity would likely require a JUV supported by at least one CTV. There would be up to Seven visits on average for exchange events per turbine over the Hornsea Four lifetime.	Footprint of seabed disturbance per event (m2)	300
Painting of transition pieces	This activity includes the application of paint or other coatings to protect from corrosion (internal/external). Technicians and equipment – largely hand tools - will be deployed from a CTV or similar vessel. Surface preparation is required to break down existing surface coatings and any associated corrosion. There will be one full paint job per turbine every 10 years, and one touch-up paint job per turbine every three years	Maximum number of full painting events – lifetime quantity (per WTG)	630 (4)
Marine growth / bird waste removal	Marine growth and bird waste will be physically brushed off turbines by hand, using a brush to break down the marine growth/organic waste (where required) followed by high-pressure jet wash (sea water or potable water). Technicians and equipment will be deployed from a CTV or similar vessel. Up to five cleaning events per turbine per year are planned	Maximum number of cleaning events – lifetime quantity (per WTG)	31,500 (175)
Access ladder replacement	This includes the replacement of access ladders to wind turbine transition pieces due to damage or corrosion. Access ladder replacement is likely to require a CTV or small JUV. Technicians and equipment will be deployed from a CTV or similar vessel. One ladder replacement event is planned	Maximum number of ladder replacement events – lifetime quantity (per WTG)	1260(7)
	per turbine every five years	Footprint of seabed disturbance per event (m2)	300
Foundation anode replacement	This includes the removal and replacement of anodes, which are required for corrosion protection (internal and external to the foundation). These sacrificial anodes, usually zinc, are fastened to an external structure. The metal	Maximum number of anode replacement events – lifetime quantity (per WTG)	1260(7)
	erodes away preferentially and so protects the erosion of the turbine (foundation) steel. Anode replacement works are likely to be undertaken via divers from a dive support vessel. One turbine anode replacement event is planned per turbine every five years.	Footprint of seabed disturbance per event (m2)	300
J-Tube repair/ replacement	The turbine foundation J-tubes occasionally require modifications or corrective maintenance, including alterations to the bell mouth of the Jtubes during a cable repair or replacement (e.g.	Maximum number of turbine foundation Jtube replacement	360 (2)

Activity	Rationale	Parameter	Maximum Design Parameter
	cutting, re-welding). This work will be undertaken	events – lifetime	
	either by ROV or divers from a dive support vessel	quantity (per WTG)	
	or using a jack-up barge. It is expected that the	Footprint of	300
	frequency will be two J-tubes over the lifetime of	seabed	
	the Offshore substation	disturbance per	
		event (m2)	
Array Cables		1	
Cable remedial	This activity provides remedial burial of array	Lifetime quantity	42
burial	cables that may have become exposed via	of cable (km)	
	natural sediment transport processes. As-laid	Maximum length of	2,000
	cable data will be reviewed to identify priority	cable subject to	
	areas possibly requiring remediation. A	jetting	
	multibeam sonar (or similar) will then be used to	(remediation re-	
	confirm the exact location and current cable	burial) per event	
	burial depth and/or areas of exposure. Should any	(m)	
	areas of exposed or insufficiently buried cables be	Maximum width of	100
	identified, jetting equipment (i.e. Flow tool or	disturbed seabed	
	similar) operated from a vessel, or diver or ROV	per event (m)	
	operated injector, will be powered up and	Maximum footprint	200,000
	manoeuvred along the exposed cable at a steady	of (temporary)	
	rate until the desired burial depth is achieved.	seabed	
	Once complete, a seabed survey will be	disturbance per	
	conducted to determine the success of the	event (m2)	
	operation. If necessary, another pass may be		
	required to achieve the specified depth. As-buried		
	data will be documented and only once all		
	remedial works have been agreed will the vessel		
	and associated equipment transit from the field		
	to port for demobilisation.		
Cable protection	Where rock protection has been employed during	Up to 25% of the	
replacement	the construction phase, this may be replenished/	volume of cable	
	maintained during operation. This operational	protection	
	rock placement would not exceed 25% of the	presented in Table	
	estimated rock volume and would occur in areas	4.26 of A1.4	
	already disturbed by rock placement (i.e. rock	Project Description	
	replenishment will occur exclusively where cable	will be replenished.	
	protection is already in place and no new areas of		
	the seabed will be affected).		
Array cable repairs	Where a fault is detected it may be necessary to	Maximum number	10
	expose the cable prior to recovery where testing	of array cable	
	will be conducted to establish the extent and	repairs – lifetime	
	type of repair required. The maximum design	quantity	
	scenario (in terms of potential environmental	Maximum footprint	363,736
	impact) for Hornsea Four has been calculated	of seabed	
	based on full de-burial always being required. In	disturbance per	
	some instances, cable replacement may be	event (m2)	
	required. The same tools used for construction	Predicted duration	Approximately
	will be utilised for re-burial. Upon completion of	of each cable	three months
	re-burial, a post-burial survey will be carried out	repair event	

A	Patienale.	Devenueter	Marine Desian
Activity	Rationale	Parameter	Maximum Design
	to group whether the achie is at the same t	Dool horrs Area	
	to assess whether the cable is at the correct	(m2)	0,100
	works, an advisory exclusion zone of 50 m ground		6 750
	the apple and 500 m ground all vessels involved	Rock-Derm Volume	0,750
	in the works will be patified via Natice to Mariners		
Offebaue Substations	In the works will be notified via Notice to Manners		
			20
Offshore	This includes the reptacement of major		20
substation	components, for example transformers (like-	of exchange	
component	forlike or as within consented envelope). These	events – lifetime	
replacement	works would likely require a JOV supported by at		700
	least one CIV. It is expected that two major	Footprint of	300
	components will require replacement per	seabed	
	offshore substation over the lifetime.	disturbance per	
		event (m2)	10
Ottshore	This includes the application of paint or other	Maximum number	10
substation and	coatings to protect the offshore substation and	ot painting events	
accommodation	accommodation platform foundations from	– lifetime quantity	
platform	corrosion (internal/external). Technicians and		
foundation	equipment will be deployed from a helicopter,		
painting	SOV, CTV or similar vessel. Surface preparation is		
	required to break down existing surface coatings		
	and any associated corrosion		
Marine growth /	As per wind turbine generators	Maximum number	1750
bird waste removal		of cleaning events	
		– lifetime quantity	
Access ladder	As per wind turbine generators	Maximum number	300
replacement		ofladder	
		replacement	
		events – lifetime	
		quantity	
Foundation anode	As per wind turbine generators	Maximum number	70
replacement		of anode	
		replacement	
		events – lifetime	
		quantity	
		Footprint of	300
		seabed	
		disturbance per	
		event (m2)	
J-Tube repair/	As per wind turbine generators	Maximum number	20
replacement		of turbine	
		foundation Jtube	
		replacement	
		events – lifetime	
		quantity	
		Footprint of	300
		seabed	
		disturbance per	
		event (m2)	

Activity	Rationale	Parameter	Maximum Design
			Parameter
Offshore export cable	e activities		
Cable remedial	As per array cables	Lifetime quantity	14
burial		of cable (km)	
		Maximum length of	2,000
		cable subject to	
		jetting	
		(remediation re-	
		burial) per event	
		(m)	
		Maximum width of	100
		disturbed seabed	
		per event (m)	
		Maximum footprint	200.000
		of (temporary)	200,000
		seabed	
		disturbance per	
		event (m2)	
Cable protection	As per array cables	Lin to 25% of the	
roplacomont	As per unuy cubies	volume of cable	
replacement		protoction	
		protection prosontod in Table	
		4.20 III AL.4 Project Description	
		will be replenished	
Export cablo	As por array cablos	Maximum number	23
ropairs	As per undy cubies		25
repairs			
		augntity	
		Aquintry for the visit	6 676
		Maximum rootprint	0,070
		disturbance per	
		astarbance per	
		event (m2)	Annual II
		Predicted duration	Approximately
		or each cable	three months
			6 180
		KOCK-Derm Area	0,100
		(m2)	(750
		Rock-berm Volume	6,/50
		mβ	
Interconnector cable	activities		_
Cable remedial	As per array cables	Lifetime quantity	/
burial		of cable (km)	
		Maximum length of	2,000
		cable subject to	
		jetting	
		(remediation re-	
		burial) per event	
		(m)	

Activity	Rationale	Parameter	Maximum Design
		Maximum width of	100m
		disturbed seabed	
		per event (m)	
		Maximum footprint	200,000
		of (temporary)	
		seabed	
		disturbance per	
		event (m2)	
Cable protection	As per array cables	Up to 25% of the	
replacement		volume of cable	
		protection	
		presented Table	
		4.26 in A1.4	
		Project Description	
		will be replenished	
Interconnector	As per array cables	Maximum number	3
repairs		of array cable	
		repairs – lifetime	
		quantity	
		Maximum footprint	6,676
		of seabed	
		disturbance per	
		event (m2)	
		Predicted duration	Approximately
		of each cable	three months
		repair event	
		Rock-berm Area	6,180
		(m2)	
		Rock-berm Volume	6,750
		m3	

3 Red Throated Diver Best Practice Protocols

- 3.1.1.1 Vessel disturbance: using best practice in the management of vessel traffic a significant disturbance to red throated diver (RTD) and common scoter can be avoided. The Applicant will have regard to best practice during the operation and maintenance of Hornsea Four in accordance with this section. Example of relevant best practice include where reasonably practicable:
 - avoid works within or within 2km of a Special Protection Area designed for RTD during the over winter period 1st Nov – 31st March inclusive
 - selecting routes that avoid known aggregations of birds;
 - restricting (to the extent reasonably possible) vessel movements to existing navigation routes (where the densities of divers are typically relatively low);
 - maintaining direct transit routes (to minimise transit distances through areas used by divers);
 - avoidance of over-revving of engines (to minimise noise disturbance); and,
 - briefing of vessel crew on the purpose and implications of these vessel management practices (through, for example, tool-box talks).